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INCREASING LIMIT OF REPRODUCING KERNELS
HYUN JAE YOO

ABSTRACT. We discuss the limit of increasing reproducing
kernels and construct the corresponding reproducing kernel
Hilbert space. Given an increasing sequence of reproducing
kernel Hilbert spaces with their norms decreasing, we can find
a limit of the sequence of those reproducing kernels. Thereby
we can construct a reproducing kernel Hilbert space on a
subset of common underlying sets. The proof corrects an
error in that of Aronszajn. We discuss the error by giving
an example.

1. Introduction. The theory of reproducing kernels is interesting
in itself and has many applications in several areas [1, 2]. Aronszajn,
in his survey paper [1], introduced the theory of reproducing kernel
Hilbert spaces quite extensively. From that paper one can learn not
only the basic definitions and properties but also many construction
methods from given kernels, for instance, restriction theory and limit
theories. There are also many concrete examples in [1]. In practice,
the limit theories for reproducing kernels are very useful and also very
important when one wants to construct a new space from a given
sequence of spaces. In this paper we focus on the limit theory of
increasing reproducing kernels.

As for a motivation, the present author has recently developed a dual
relation in a dual pair of reproducing kernel Hilbert spaces (rigged
spaces) and applied it to show the Gibbsianness of certain determi-
nantal point processes [4] (see also [3]). There, the limit theory of
increasing reproducing kernels played an important role.

As mentioned above the theory of restrictions and limits of repro-
ducing kernels was well established by Aronszajn [1]. But the proof
for the construction of an increasing limit of a sequence of reproducing
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kernels in [1] contains an error. The purpose of this paper is to correct
it. Thereby we provide a proof for the result. In Section 3 we give an
example which shows why Aronszajn’s method needs a correction.

2. Preliminaries and main result. In this section, for the
readers’ convenience, we briefly recall the definition of reproducing
kernel Hilbert spaces, and then state the main result. Most of the
following contents come from [1].

Let E be any set and F a class of functions on E forming a Hilbert
space. F may be a complex or real Hilbert space, but we only consider
the complex case. By complexifying it, if necessary, the real case can
be dealt with equally well. Let (-,-) denote the inner product in F
(linear in the second variable). A function K(z,y), z,y € E, is called
a reproducing kernel (RK in short) of F if

(i) For every y € E, the function K(-,y) belongs to F,

(ii) The reproducing property: for every y € F and f € F, f(y) =
(K('a y)7 f)
The Hilbert space F possessing an RK is called a reproducing kernel

Hilbert space (RKHS shortly). The basic property of any RK K(z,y)
is that it is a positive definite function in the following sense: for any

finite complex numbers z1,...,z, € C,
n
(2.1) N K (zi,75)2 > 0,
i,j=1
for all zy,...,z, € E. The converse is also true: if K(z,y) is a

positive definite function on F x F, there exists a unique RKHS with
RK K(z,y).

The main subject we want to discuss in this paper is the limit of
increasing sequence of reproducing kernels. It is explained in [1, Sec. 9,
Part I]. The following settings are the same as in [1].

Let {E,} be a decreasing sequence of sets, E their intersection:

(2.2) E=()En, E1DEyD---.

n=1
For each n, let F,, be a class of functions defined in F,,. For m > n, we
define the restriction f,,, of f, € F, to the set E,,. We suppose that
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F,, form an increasing sequence:
(2.3) for every f, € F,, and every m >n, fum € Fm.

We suppose further that the norm ||-||,, defined in F,, form a decreasing
sequence:

(2.4) for every f, € F,, and every m > n, ||fam|lm < || falln-

Finally, we suppose that every F,, possesses an RK K, (z,y). As was
shown in [1], we have

(2.5) Kym < K,, form>n,

meaning that K,,(z,y) — Knm(z,y) is a positive definite function on
E,,. Therefore, for each y € E, {K,,(y,y)} is an increasing sequence
of positive numbers. Its limit may be infinite. We define, consequently,

(2.6) Ey:={ye E: Ko(y,y) := n}inoo K (y,y) < oo}

We suppose that Ej is not empty. Let Fy be the class of all restrictions
frno of functions f, € F, (n = 1,2,...) to the set E;. From (2.4)
the sequence {|| fnk||k }k>n is decreasing and we define for any element
f € Fo (i.e., f = fno for some f, € F,)

(2.7) | fllo := inf Jim | frrell k>
— o0

where the infimum is taken over all functions f, € F,, n > 1, whose
restriction to Ejy is f.

Proposition 2.1. The function ||f||2 in (2.7) is a quadratic form
and || - ||o is @ norm on Fy.

Remark 2.2. In [1], the norm || - ||o was erroneously defined as
(2.8) [ Fnollo = B | fr -
—00

But from this alone we cannot guarantee the well-definedness: we
cannot confirm ||fnollo = ||gnollo for different f,, and g, in F, with
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frno = gno- That is, it might be the case ||0lo > 0 for the zero vector
in Fg, and hence || - ||p is not a norm. In the next section we will show
that this situation really occurs in the examples. Since the statement
and the proof of Aronszajn in [1, Theorem II, page 367] presumes that
Il - llo is @ norm in Fy, it is necessary to correct it.

After getting a suitable norm || ||o for Fo, we can now state the result
properly. The following was stated in [1, Theorem II, page 367].

Theorem 2.3. For each y € Ey, the restrictions {K,o(-,y)} form
a Cauchy sequence in Fy. Moreover, for each x € Ey, the sequence
{Kno(z,y)} converges to a number K*(x,y) which is an RK for an
RKHS F§ on Ejp.

The way of the proof for the main result is the same as in [1]. We only
need to check that the new norm replaces well the one in Aronszajn’s
arguments. In order to make the paper complete, however, we present
it in the Appendix.

3. A counter example. In this section we show why it is needed to
take the infimum in the definition of the norm in (2.7). What we will
show is that if the “inf” in the definition of || - ||p in (2.7) were missing,
II]lo is not a norm in general because the zero vector may have nonzero
norm.

Let E := N and {e,}n>1 be the usual basis of the Hilbert space
H :=1*(E). Let A:= B*B, where B is a bounded linear operator on
H defined by

el n=1,
(31) Ben = { 1 (el +€n) n Z 2,

and by a linear extension. For each € > 0 we let
(3.2) A(e):=A+e.

Notice that for each ¢ > 0, A(e) > ¢ > 0 and so it is invertible; we let
B(e) be its inverse:

(3.3) B(e):= A(e) L.
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For z,y € E, let B(e)(z,y) be the representation of B(e) with respect
to the basis {ep}n>1:

(3.4) B(e)(z,y) := (es, B(e)ey), z,y€ E=N,

where (-, ) denotes the inner product of H and the corresponding norm
will be denoted by || - ||. For every ¢ > 0, let F. be the RKHS with
RK B(e)(z,y). Notice that F. consists of the vectors of % with a new
inner product:

(3.5) (f:9)e = (£, Ale)g), f.g€H.

In fact, since A(e) and B(e) are bounded and self-adjoint operators on
H, B(e)(-,y) = B(e)ey € F. = H and for every f € F. and y € F,

(B(e)(-y), f)e = (B(e)ey, A(e)f)

(3.6)

= (ey, f) = f(y)-
By denoting || - || the norm corresponding to the inner product (-, -)e,
we see that || - || and || - || are equivalent for all £ > 0. The system of

RKHS’s {Fc}c>0 will play the role of the sequence {F,} of the main
body. (If necessary, we just take a sequence s,, | 0 and consider {F;, };
but, it is not harmful to consider the continuous parameter.) Since the
space E., on which F, is constructed, is F for all ¢ > 0, we have

ﬂEE:E.

e>0

Now we want to find Fy that is defined by

(37 Fo={ycE: K(u.y):=lmBE)(wy) < oo.

Lemma 3.1. Ey = E \ {1}.

Proof. For a moment we denote || - || by || - ||c,~ and define a new
norm || - ||c,+ corresponding to the inner product

(38) (fa g)e,Jr = (faB(E)g)a f,geH.
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To compute the components B(e)(y,y), we can apply the variational
principle of [4] to the dual pair of RKHS’s with RK’s A(e)(z,y) and
B(e)(z,y). We decompose FE into three disjoint sets: F = {y} U (E\
{y}) U@. Then by [4, Theorem 2.4] (see also [3, Theorem 6.3]) we get

—1
(39) BE@y) =[lm il (e fa A ey~ )]

where A 1 E means that A increases to F through finite sets and
Han(E\{y}) is the subspace of H spanned by {e, : z € AN (E\ {y})}.
Since A(e) is a bounded operator the quantity inside the bracket [-- -]
in (3.9) is equal to

(3.10) afe) := fe}itr;f\{y}(ey — I, A(e)(ey = ).

When y = 1, from the definition of the operator A(e), we have for any
feMpqy,

(3.11) (e1 — £, A(e)(e1 — f))
= |1B(ex = f)[* +elles — fI1?

2
_ ‘1 Y ] Y gl +s<1+ 3 |fm2>7

m>2 m>2 m>2

where f =3, fméem. By varying the coefficients {f,,} we find the
infimum value of (3.11). For it, we first minimize the right hand side
of (3.11) under the constraint (we may assume that f,,’s are real)

(3.12) > %fm = a.

m>2

By the Lagrange multiplier method, the minimum is attained for f,,’s
that satisfy for all m > 2

1 1
(3.13) 2 fon + 26 fm = 22—,
m m

where X is a constant. From (3.13) we get

1\ '
(3.14) fn = <s + 2) 2 om>2
m m
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Inserting these values into (3.12) we get
(3.15) A = b(g)a;

here

and notice that b(e) — 0 as ¢ — 0. The infimum of (3.11) under (3.12)
is then

(3.16) (1—a)?® +b(c)a® +e.

Now the quadratic form has infimum value, which is a(e) in (3.10),

(3.17) ae) = be) +e.

Since b(e) — 0 as € — 0, we have a(e) — 0 as € — 0, and from (3.9)
we conclude that

(3.18) B(e)(1,1) =a(e)™ - 00 ase— 0.

For the points y = n € E with n > 2, by similar arguments as above,
we have

(3.19) B(e)(nyn) = {% (1 + %) +a} N

where

L 1 B
b'(e) := [E+Zm2(m2+s) —0 ase—0.

m>1
m#n
Therefore we get
(3.20) lim B(e)(n, n) = n? <oo, n>2.
e—

This completes the proof. O
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Now choose the vector f. = e; = (1,0,0,...) € F.. For 0 < &’ < ¢,
since E.r = E. = E, the restriction f..: of f. to F./ is again f.. Thus

lim | feer[[2 = lim [Jeq ]2,
e’—0 e'—0
(3.21) = lim (e1, A(¢")er)
e’'—0
= lim (||Bey||* +€') =1 > 0.
e'—0
On the other hand the vector f.o, the restriction of f. to Ejy, is the

zero vector. Therefore if the “inf” were missing in (2.7), we would get
I0]lo > 0, that is, the norm is not well-defined.

APPENDIX

A. Proof of Theorem 2.3. We start with a proof of Proposition
2.1.

Proof of Proposition 2.1. We first show that the function || - ||o is a
norm. It obviously holds that ||0]p = 0. Now suppose that || f|o = 0
for some vector f € Fy. For any £ > 0 there is a vector f,, € F,, such
that f,o = f and

lim ||fnk||k < E.
k—o0

Then, for any y € Ey,

1F W) = fro@)] = | Frr (v)]
- ‘(Kk('7y)vfnk)k|
(A1) < el K (3, )2
- (klggo||fnk||k)K0(y,y)1/2

< EKO(y, y)1/2'

Since € > 0 is arbitrary f(y) = 0; hence, f = 0. In order to show that

| - |2 is a quadratic form it is enough to show that || - ||o satisfies the
parallelogram law:

I1F +gll5 + 11F = gllg = 21l £115 + 2llgll5-
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Then || - ||o is the natural norm coming from an inner product. Given
an € > 0, suppose that u,, and v,, are the vectors in F,, for some n > 1
such that u,o = f and v,y = g, and, moreover,

lim [|unkllr < [|f[lo +¢
k— o0

and

lim [[vnzl[r < llgllo + e
k—o0

Then since upg + Vo = f + g and Upg — Vo = f — g,

1F + gl + 15 = I < Jim (lune + vnkl2 + Jmie = 0o 3)
= Tim 2 (Junk [ + ons )

< 2(fllo +2)* + 2(llgllo +&)*,

where the equality in the second line comes from the parallelogram law
for the space Fj. Since ¢ is arbitrary we have

(A.2) 1f +gllg + 1f = gll§ < 2II£1I5 +2llgll5,  £,9 € Fo.

In a similar way we can show the reverse inequality and this completes
the proof. ]

We will denote by (-,-)o the inner product for the quadratic form
- 115-

If one wants to consider RK’s for a given class of functions on a set,
the theory of restriction of RK’s and the functional completion problem

play the important roles. First we introduce the restriction theory of
RK’s.

Theorem A.1 ([1, page 351]). If K is the RK of a class of functions
defined on a set E with norm ||-||, then K restricted to a subset Ey C E
1s the RK of the class F1 of all restrictions of functions of F to the subset
Ey. For any such restriction f1 € Fy, the norm ||fi||1 s the minimum
of |f|| for all f € F whose restriction to Ey is fi.
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We emphasize here that the norm ||fi]/; in the above theorem is
attained at some vector f' € F (see [1, page 351]):

(A.3)  ||f1lls = ||f'|| for some f' € F whose restriction to Ej is fi.

Next we discuss the functional completion problem. Let F be a space
of functions on a set E' which is a pre-Hilbert space. By a functional
completion of F, we mean a completion of F by adjunction of functions
on FE such that the evaluation map at any point y € E' is a continuous
function on the completed space [1, page 347]. Aronszajn has proved
that in order that F admit a functional completion it is necessary and
sufficient that

1° for every y € E, the linear functional f(y) defined in F be
continuous;

2° for a Cauchy sequence {f,} C F, the condition f,(y) — 0 for every
y implies that f,, itself converges to 0 in norm.

We notice that if the condition 1° is satisfied but 2° is not fulfilled,
there always exists an abstract way so that 2° is satisfied. One way
introduced in [1] is as follows. We first consider an abstract completion
F of F. We choose an additional set E’ of ideal elements from F such
that the functions of F, extended to F + E’ with the same norm as in
F, satisfy 2° admitting a functional completion (see [1, page 350] for
the details).

Let us come back to our discussion. We show that the space Fy
satisfies the condition 1°.

Lemma A.2. The space Fg of functions on Ey equipped with the
norm || - ||o satisfies the condition 1°.

Proof. Let f € Fy, and let f,, € F,, be any element such that f,o = f.
Then for any fixed y € Ey, by the same computation as in (A.1) we get

F) < (Jim (1 furlle) Koy, ).

lim
k—o0

Since this holds for any f, € F,, with f,,0 = f, we conclude that
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(A.4) F®I < I lloKoly, y)'/?,

that is, for each y € Fy the functional f(y) is continuous on Fy. O

Since the condition 2° is not assured, in general we rely on the method
sketched above. By adjoining an extra set E’ to Ey, if necessary, and
extending the functions of Fy to the set Ey+ E’ with the same norm as
in Fo, we get a functionally completed space, say Fo, with an RK K.
Then, by using Theorem A.1, we restrict the functions to the set Ey to
get an RKHS F§ on Ey with an RK K§, which is the restriction of K
to Ey. Because each element of Eo is an el element of F( represented as a
function on the set Eq+E’, to any fo € FO, there corresponds a Cauchy
sequence { f0 )} C Fp which converges to fo Moreover, by the way the
norm is defined for the restrictions in Theorem A.1, the restricted class
F§ and its norm || - || can be described in the following way (see [1,
page 366]): f& € F} if there is a Cauchy sequence {fén)} C Fg such
that

(A.5) fo(z) = ILm fé")(m) for every = € Ey,
and the norm is given by

(A.6) 1£3 115 = min Lim [1£5™lo,

the minimum being taken for all Cauchy sequences { fén)} c Fo
satisfying (A.5). By the property (A.3) there exists at least one Cauchy
sequence for which the minimum is attained. Such sequences are called

determining f7, as in [1]. The scalar product corresponding to || - ||§ is
defined by
(A7) (/3,990 = lim (£5™, 96 )o

for any two Cauchy sequences { fén)} and {g(()n)} determining f§ and
96 As was noted in [1], we remark that even when only one of {fén)}

or {g(()")} is determining, the relation (A.7) is still valid. We are now
ready to prove Theorem 2.3.
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Proof of Theorem 2.3. First we show that {K,o(-,y)} is a Cauchy
sequence in Fg. For any fixed y € Fy and n < m < k, we have from
(2.4)

(A.8)
IRni) = Kol < ||K (+9) = Knm ()12

K (y,9) — Knm(¥,9) — Knm(y,9)
+||K m( )%

Kn(y,y) — 2Kn(y,9) + | Kn (- )12

Kn(y,y) — Kn(y,y)-

Taking £ — oo, we have
(4.9)  (Jim [[Kk(,9) = Kk (59)IE) < Kin(:9) = Kn(y:0),

and hence we get

(A.10) 1K mo(-y) = Kno (5 0)15 < Km(y,9) — Kn(y, ),

because of the definition of the norm ||-||o in (2.7). This proves, together
with (2.6), that {K,o(-,y)} is a Cauchy sequence in Fy. By Lemma A.2,
for every © € Ej the sequence {K,o(z,y)} converges to a function
K} (z,y). By (A.5) the function Kj(-,y) belongs to K.

It remains to prove the reproducing property of K. For this, take

any fi € F§ and a Cauchy sequence { fén)} C Fo determining f;. For
each n > 1, we can find a number £, € N and a function f; € F,,

such that fr, o = (n) and
(A11) tim [ feal? < IFPIE + 5
) =00 bt = 1170 0 2n2’

Now find a number m,, > k,, such that

1
A.12 mo 12— i 2< -,
(A.12) | fiewm [, — B il < 55

Then from (A.11) and (A.12) we have

n 1
(A.13) | wmallin, 16718 < 50 > E
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It is clear that {K,, 0(-,y)} is also a Cauchy sequence in Fy such that
Kp,,0(z,y) converges to K (z,y) for all z € Fy. Consequently, from
(A.7) it follows that

(A-14) (Ko(9)", £5)5 = lim (Km,o(59), £5™)o.
We may now write

(Ko (9)s 870 = (Koo, (), Frnm Y
(A15) - [(Km (‘,Z/), fknmn)mn

- (KmHO('vy),fkno)o],

noticing that fy o = fén). The square bracket is of the form [(g, h)m, —
(g0, ho)o] for g, h of F,, (go and hg are restrictions of g and h to Ej,
respectively). This is a bilinear form in g and h, and the corresponding
quadratic form (g,9)m, — (90,90)0 = |lgllZ,, — llgoll§ is positive (see
(2.7)). Consequently by using the Cauchy-Schwarz inequality and
(A.13) we get in connection with (A.15)

111 < 1Ko (s )2, — [ Koo (- 9)12] 2

1/2
(A.16) % [ fenmall, = I finol2]
1 1
< NEm. () |lm, = —=Km 172,
< Ko, )l = = Kom, (4,9)

As n — oo this converges to 0, since K, (y,y)  Ko(y,y) < oo.
Therefore from (A.14)—(A.16) we get

(Kg(ay)a fg)s = nll)nolo(Kmn(vy)a fknmn)mn

n—o0

(A.17) = lim f o(y)

which is the reproducing property of K. The proof is completed. o
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